Skip to main content
Log in

Effect of temperature and magnetoelastic loads on the free vibration of a sandwich beam with magnetorheological core and functionally graded material constraining layer

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we investigate the effects of temperature and magnetoelastic load, on the free vibration of an elastomer sandwich beam with magnetorheological (MR) core and functionally graded material (FGM) constraining lamina under high temperature environment. This sandwich beam is named FGMR beam in this paper. The material properties of the functionally graded material layers are assumed to be temperature-dependent and vary continuously through-the-thickness according to a simple power-law distribution in terms of the volume fractions of the constituents. Also, it is assumed that the beam may be clamped, hinged, or free at its ends and is subjected to one-dimensional steady-state heat conduction in the thickness direction. The classical Hamilton’s principle and the assumed mode method are used to set up the equations of motion. The convergence of the method is examined and the accuracy of the results is verified by comparing the results with those available. In fact, the aim of this study is to investigate the effect of some parameters on the dynamic behavior of a sandwich beam with magnetorheological core and FGM constraining layers under temperature environment. First, the effects of magnetic field intensity on natural frequency and modal loss factor of the FGMR beam are studied. Subsequently the influence of temperature distribution on the vibration of FGMR sandwich beam is shown for different boundary condition and volume fraction index. Finally, the effect of the slenderness ratio on the fundamental frequency is presented. The results show that the modal characteristics are significantly influenced by the applied magnetic field, volume fraction index, temperature change, slenderness ratio, and the end support conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lara-Prieto, V., Rob, R., Jackson, M., Silberschmidt, V., Kęsy, Z.: Vibration characteristics of MR cantilever sandwich beams, experimental study. Smart Mater. Struct. 19(1), 015005 (2009)

    Google Scholar 

  2. Rajamohan, V., Sedaghati, R., Rakheja, S.: Vibration analysis of a multi-layer beam containing magnetorheological fluid. Smart Mater. Struct. 19(1), 015013 (2009)

    Google Scholar 

  3. Aguib, S., Nour, A., Zahloul, H., Bossis, G., Chevalier, Y., Lançon, P.: Dynamic behavior analysis of a magnetorheological elastomer sandwich plate. Int. J. Mech. Sci. 87, 118–136 (2014)

    Google Scholar 

  4. Bolat, F.C., Sivrioglu, S.: Active vibration suppression of elastic blade structure: using a novel magnetorheological layer patch. J. Intell. Mater. Syst. Struct. 29(19), 3792–3803 (2018)

    Google Scholar 

  5. Dyniewicz, B., Bajkowski, J.M., Bajer, C.I.: Semi-active control of a sandwich beam partially filled with magnetorheological elastomer. Mech. Syst. Signal Process. 60–61, 695–705 (2015)

    Google Scholar 

  6. Eshaghi, M., Sedaghati, R., Rakheja, S.: Dynamic characteristics and control of magnetorheological/electrorheological sandwich structures: a state-of-the-art review. J. Intell. Mater. Syst. Struct. 27(15), 2003–2037 (2015)

    Google Scholar 

  7. Irazu, L., Elejabarrieta, M.J.: Magneto-dynamic analysis of sandwiches composed of a thin viscoelastic-magnetorheological layer. J. Intell. Mater. Syst. Struct. 28(20), 3106–3114 (2017)

    Google Scholar 

  8. Rajamohan, V., Rakheja, S., Sedaghati, R.: Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid. J. Sound Vib. 329(17), 3451–3469 (2010)

    Google Scholar 

  9. Naji, J., Zabihollah, A., Behzad, M.: Layerwise theory in modeling of magnetorheological laminated beams and identification of magnetorheological fluid. Mech. Res. Commun. 77, 50–59 (2016)

    Google Scholar 

  10. Asgari, M., Kouchakzadeh, M.A.: Aeroelastic characteristics of magneto-rheological fluid sandwich beams in supersonic airflow. Compos. Struct. 143, 93–102 (2016)

    Google Scholar 

  11. Asgari, M., Rokn-Abadi, M.R., Yousefi, M., Haddadpour, H.: Aeroelastic analysis of a sandwich panel with partially treated magneto-rheological fluid core. J. Intell. Mater. Syst. Struct. 30(1), 140–154 (2018)

    Google Scholar 

  12. Rokn-Abadi, M., Yousefi, M., Haddadpour, H., Sadeghmanesh, M.: Dynamic stability analysis of a sandwich beam with magnetorheological elastomer core subjected to a follower force. Acta Mech. 231(9), 3715–3727 (2020)

    Google Scholar 

  13. Norouzi, M., Sajjadi-Alehashem, S.M., Vatandoost, H., Qing, N.Y., Shahmardan, M.M.: A new approach for modeling of magnetorheological elastomers. J. Intell. Mater. Syst. Struct. 27(8), 1121–1135 (2015)

    Google Scholar 

  14. Yalcintas, M., Dai, H.: Magnetorheological and electrorheological materials in adaptive structures and their performance comparison. Smart Mater. Struct. 8(5), 560–573 (1999)

    Google Scholar 

  15. Nayak, B., Dwivedy, S.K., Murthy, K.S.R.K.: Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions. J. Sound Vib. 330(9), 1837–1859 (2011)

    Google Scholar 

  16. Li, Y., Li, J., Li, W., Du, H.: A state-of-the-art review on magnetorheological elastomer devices. Smart Mater. Struct. 23(12), 123001 (2014)

    Google Scholar 

  17. Nayak, B.: Dynamic Stability of Magnetorheological Elastomer Based Sandwich Beams. Indian Institute of Technology, Guwahati (2013)

    Google Scholar 

  18. Nayak, B., Dwivedy, S.K., Murthy, K.S.R.K.: Dynamic stability of a rotating sandwich beam with magnetorheological elastomer core. Eur. J. Mech. A. Solids 47, 143–155 (2014)

    MATH  Google Scholar 

  19. Zhou, G.Y., Wang, Q.: Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part I: magnetoelastic loads in conductive skins. Int. J. Solids Struct. 43(17), 5386–5402 (2006)

    MATH  Google Scholar 

  20. Zhou, G.Y., Wang, Q.: Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part II: dynamic properties. Int. J. Solids Struct. 43(17), 5403–5420 (2006)

    MATH  Google Scholar 

  21. Wei, K.X.: Vibration suppression of flexible beams using MR elastomers. Adv. Mater. Res. 97(101), 1578–1581 (2010)

    Google Scholar 

  22. Hu, G., Guo, M., Li, W., Du, H., Alici, G.: Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic fields. Smart Mater. Struct. 20(12), 127001 (2011)

    Google Scholar 

  23. Navazi, H.M., Bornassi, S., Haddadpour, H.: Vibration analysis of a rotating magnetorheological tapered sandwich beam. Int. J. Mech. Sci. 122, 308–317 (2017)

    Google Scholar 

  24. Bornassi, S., Navazi, H.M., Haddadpour, H.: Edgewise bending vibration analysis of a rotating sandwich beam with magnetorheological elastomer core. Int. J. Struct. Stab. Dyn. 18(11), 1850134 (2018)

    MathSciNet  Google Scholar 

  25. de Souza Eloy, F., Gomes, G.F., Ancelotti, A.C., de Cunha, S.S., Bombard, A.J.F., Junqueira, D.M.: A numerical-experimental dynamic analysis of composite sandwich beam with magnetorheological elastomer honeycomb core. Compos. Struct. 209, 242–257 (2019)

    Google Scholar 

  26. Nayak, B., Dwivedy, S.K., Murthy, K.S.R.K.: Multi-frequency excitation of magnetorheological elastomer-based sandwich beam with conductive skins. Int. J. Non-Linear Mech. 47(5), 448–460 (2012)

    Google Scholar 

  27. Nayak, B., Dwivedy, S.K., Murthy, K.: Vibration analysis of a three-layer magnetorheological elastomer embedded sandwich beam with conductive skins using finite element method. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 227(4), 714–729 (2012)

    Google Scholar 

  28. Rokn-Abadi, M.R., Shahali, P., Haddadpour, H.: Effects of magnetoelastic loads on free vibration characteristics of the magnetorheological-based sandwich beam. J. Intell. Mater. Syst. Struct. 31(7), 1015–1028 (2020)

    Google Scholar 

  29. Suresh, S., Mortensen, A.: Fundamentals of Functionally Graded Materials. IOM Communications Ltd., London (1998)

    Google Scholar 

  30. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G.: Functionally Graded Materials: Design, Processing and Applications, Materials Technology Series, 1st edn. Kluwer Academic Publisher, Dordrecht (1999)

    Google Scholar 

  31. Touloukian, Y.S.: Thermophysical Properties of High Temperature Solid Materials. Macmillan, New York (1967)

    Google Scholar 

  32. Marzocca, P., Fazelzadeh, S.A., Hosseini, M.: A review of nonlinear aero-thermo-elasticity of functionally graded panels. J. Therm. Stresses 34(5), 536–568 (2011)

    MATH  Google Scholar 

  33. Ching, H.K., Yen, S.C.: Transient thermoelastic deformations of 2-D functionally graded beams under nonuniformly convective heat supply. Compos. Struct. 73(4), 381–393 (2006)

    Google Scholar 

  34. Ke, L.L., Wang, Y.S.: Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. Compos. Struct. 93(2), 342–350 (2011)

    Google Scholar 

  35. Piovan, M.T., Machado, S.P.: Thermoelastic dynamic stability of thin-walled beams with graded material properties. Thin Walled Struct. 49(3), 437–447 (2011)

    Google Scholar 

  36. Kolakowski, Z.: Some aspects of interactive dynamic stability of thin-walled trapezoidal FGM beam-columns under axial load. Thin-Walled Struct. 98, 431–442 (2016)

    Google Scholar 

  37. Fazzolari, F.A.: Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations. Compos. B Eng. 136, 254–271 (2018)

    Google Scholar 

  38. Zhang, N., Khan, T., Guo, H., Shi, Sh., Zhong, W., Zhang, W.: Functionally graded materials: an overview of stability, buckling, and free vibration analysis. Adv. Mater. Sci. Eng. 2019, 135–150 (2019)

    Google Scholar 

  39. Reddy, J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47(1–3), 663–684 (2000)

    MATH  Google Scholar 

  40. Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., Bedia, E.A.A., Tounsi, A.: Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model. Steel Compos. Struct. 41(4), 478–503 (2021)

    Google Scholar 

  41. Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Tounsi, A., Hussain, M.: An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core. Steel Compos. Struct. 41(2), 167–191 (2021)

    Google Scholar 

  42. Kapuria, S., Bhattacharyya, M., Kumar, A.N.: Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Compos. Struct. 82(3), 390–402 (2008)

    Google Scholar 

  43. Şimşek, M.: Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des. 240(4), 697–705 (2010)

    MathSciNet  Google Scholar 

  44. Pradhan, S.C.: Vibration suppression of FGM shells using embedded magnetostrictive layers. Int. J. Solids Struct. 42(9), 2465–2488 (2005)

    MATH  Google Scholar 

  45. Zenkour, A.M., Allam, M.N.M., Sobhy, M.: Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundations. Acta Mech. 212(3), 233–252 (2010)

    MATH  Google Scholar 

  46. Allahverdizadeh, A., Mahjoob, M.J., Eshraghi, I., Asgharifard, P.S.: Effects of electrorheological fluid core and functionally graded layers on the vibration behavior of a rotating composite beam. Meccanica 47(8), 1945–1960 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Allahverdizadeh, A., Mahjoob, M.J., Eshraghi, I., Nasrollahzadeh, N.: On the vibration behavior of functionally graded electrorheological sandwich beams. Int. J. Mech. Sci. 70, 130–139 (2013)

    Google Scholar 

  48. Allahverdizadeh, A., Mahjoob, M.J., Nasrollahzadeh, N., Eshraghi, I.: Investigation of functionally graded and viscoelastic layers effects on the dynamic behavior of functionally graded electro-rheological sandwich beams. Mech. Adv. Mater. Struct. 22(9), 760–769 (2015)

    Google Scholar 

  49. Kim, Y.W.: Temperature dependent vibration analysis of functionally graded rectangular plates. J. Sound Vib. 284(3), 531–549 (2005)

    Google Scholar 

  50. Li, Q., Iu, V.P., Kou, K.P.: Three-dimensional vibration analysis of functionally graded material plates in thermal environment. J. Sound Vib. 324(3), 733–750 (2009)

    Google Scholar 

  51. Shahrjerdi, A., Mustapha, F., Bayat, M., Majid, D.L.A.: Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory. J. Mech. Sci. Technol. 25(9), 21–95 (2011)

    Google Scholar 

  52. Khalili, S.M.R., Mohammadi, Y.: Free vibration analysis of sandwich plates with functionally graded face sheets and temperature-dependent material properties: a new approach. Eur. J. Mech. A. Solids 35, 61–74 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Wattanasakulpong, N., Prusty, G.B., Kelly, D.W.: Free and forced vibration analysis using improved third-order shear deformation theory for functionally graded plates under high temperature loading. J. Sandwich Struct. Mater. 15(5), 583–606 (2013)

    Google Scholar 

  54. Attia, A., Tounsi, A., Bedia, E.A., Mahmoud, S.: Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories. Steel Compos. Struct. 18, 187–212 (2015)

    Google Scholar 

  55. Wang, Y.Q., Zu, J.W.: Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp. Sci. Technol. 69, 550–562 (2017)

    Google Scholar 

  56. Daikh, A.A.: Temperature dependent vibration analysis of functionally graded sandwich plates resting on Winkler/Pasternak/Kerr foundation. Mater. Res. Express. 6(6), 065702 (2019)

    Google Scholar 

  57. Fazelzadeh, S.A., Malekzadeh, P., Zahedinejad, P., Hosseini, M.: Vibration analysis of functionally graded thin-walled rotating blades under high temperature supersonic flow using the differential quadrature method. J. Sound Vib. 306(1), 333–348 (2007)

    Google Scholar 

  58. Fazelzadeh, S.A., Hosseini, M.: Aerothermoelastic behavior of supersonic rotating thin-walled beams made of functionally graded materials. J. Fluids Struct. 23(8), 1251–1264 (2007)

    Google Scholar 

  59. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U., Al-Zahrani, M.M.: Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Compos. Struct. 269, 114030 (2010)

    Google Scholar 

  60. Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M., Al-Dulaijan, S.U.: Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation. Structures 33(8), 2177–2189 (2021)

    Google Scholar 

  61. Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Al-Zahrani, M.M.: Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations. Steel Compos. Struct. 39(5), 631–643 (2021)

    Google Scholar 

  62. Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U., Al-Zahrani, M.M.:Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment. Thin-Walled Struct. 170 (2022).

  63. Xiang, H.J., Yang, J.: Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Compos. B Eng. 39(2), 292–303 (2008)

    Google Scholar 

  64. Pradhan, S.C., Murmu, T.: Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method. J. Sound Vib. 321(1), 342–362 (2009)

    Google Scholar 

  65. Mahi, A., Adda-Bedia, E.A., Tounsi, A., Mechab, I.: An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions. Compos. Struct. 92(8), 1877–1887 (2010)

    Google Scholar 

  66. Shen, H.S., Wang, Z.X.: Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments. Int. J. Mech. Sci. 81, 195–206 (2014)

    Google Scholar 

  67. Zahedinejad, P.: Free vibration analysis of functionally graded beams resting on elastic foundation in thermal environment. Int. J. Struct. Stab. Dyn. 16(07), 1550029 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Joseph, S.V., Mohanty, S.C.: Temperature effects on buckling and vibration characteristics of sandwich plate with viscoelastic core and functionally graded material constraining layer. J. Sandwich Struct. Mater. 21(4), 1557–1577 (2017)

    Google Scholar 

  69. Gupta, A., Talha, M.: Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. Int. J. Struct. Stab. Dyn. 18(01), 1850013 (2017)

    MathSciNet  Google Scholar 

  70. Mead, D.J., Markus, S.: The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J. Sound Vib. 10(2), 163–175 (1969)

    MATH  Google Scholar 

  71. Wei, K., Meng, G., Zhang, W., Zhou, S.: Vibration characteristics of rotating sandwich beams filled with electrorheological fluids. J. Intell. Mater. Syst. Struct. 18(11), 1165–1173 (2007)

    Google Scholar 

  72. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, Boca Raton (2006)

    Google Scholar 

  73. Li, W.H., Chen, G., Yeo, S.H.: Viscoelastic properties of MR fluids. Smart Mater. Struct. 8(4), 460–468 (1999)

    Google Scholar 

  74. Daikh, A.A., Megueni, A.: Thermal buckling analysis of functionally graded sandwich plates. J. Therm. Stresses 41(2), 139–159 (2018)

    Google Scholar 

  75. Majkut, L.: Free and forced vibration of Timoshenko beams described by single difference equation. J. Theor. Appl. Mech. 47, 193–210 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrokh Shams.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients of the potential and kinetic energies of the functionally graded layers;

$$\begin{aligned} {D}_{i}^{1}&={\int }_{-{h}_{i}/2}^{{h}_{i}/2}\left(\frac{{E}_{i}\left({z}_{i},{T}_{i}\right)}{1-{\nu }_{i}^{2}\left({z}_{i},{T}_{i}\right)}\right){\hbox{d}z}_{i} ,\quad i=t, \, b, \\ {D}_{i}^{2}&={\int }_{-{h}_{i}/2}^{{h}_{i}/2}\left(\frac{{E}_{i}\left({z}_{i},{T}_{i}\right)}{1-{\nu }_{i}^{2}\left({z}_{i},{T}_{i}\right)}\right){{z}_{i}\hbox{d}z}_{i} ,\\ {D}_{i}^{3}&={\int }_{-{h}_{i}/2}^{{h}_{i}/2}\left(\frac{{E}_{i}\left({z}_{i},{T}_{i}\right)}{1-{\nu }_{i}^{2}\left({z}_{i},{T}_{i}\right)}\right){{z}_{i}^{2}\hbox{d}z}_{i},\end{aligned}$$
(46)
$$\begin{aligned} {\Lambda }_{i}^{1}&={\int }_{-{h}_{i}/2}^{{h}_{i}/2}\left(-\frac{E\left({z}_{i},{T}_{i}\right)\alpha \left({z}_{i},{T}_{i}\right)}{1-\nu \left({z}_{i},{T}_{i}\right)}\Delta T\left({z}_{i}\right)\right){\hbox{d}z}_{i} ,\quad i=t,b, \\{\Lambda }_{i}^{2}&={\int }_{-{h}_{i}/2}^{{h}_{i}/2}\left(-\frac{E\left({z}_{i},{T}_{i}\right)\alpha \left({z}_{i},{T}_{i}\right)}{1-\nu \left({z}_{i},{T}_{i}\right)}\Delta T\left({z}_{i}\right)\right){{z}_{i}\hbox{d}z}_{i},\\{\Lambda }_{i}^{3}&={\int }_{-{h}_{i}/2}^{{h}_{i}/2}\left(-\frac{E\left({z}_{i},{T}_{i}\right)\alpha \left({z}_{i},{T}_{i}\right)}{1-\nu \left({z}_{i},{T}_{i}\right)}\Delta T\left({z}_{i}\right)\right){{z}_{i}^{2}\hbox{d}z}_{i},\end{aligned}$$
(47)
$$\begin{aligned} {F}_{i}^{1}&={\int }_{-{h}_{i}/2}^{{h}_{i}/2}{\rho }_{i}\left({z}_{i},{T}_{i}\right){\hbox{d}z}_{i} ,\quad i=t, b, c ,\\{F}_{i}^{2}&={\int }_{-{h}_{i}/2}^{{h}_{i}/2}{\rho }_{i}\left({z}_{i},{T}_{i}\right){{z}_{i}\hbox{d}z}_{i} ,\\ {F}_{i}^{3}&={\int }_{-{h}_{i}/2}^{{h}_{i}/2}{\rho }_{i}\left({z}_{i},{T}_{i}\right){{z}_{i}^{2}\hbox{d}z}_{i}.\end{aligned}$$
(48)

The coefficients of the mass matrices for the FGMR beam:

$$\begin{aligned} {{M}}_{11}&=\left(B\left({F}_{{\rm t}}^{3}+{F}_{{\rm b}}^{3}\right)+{\xi }_{1}{S}^{2}\right){\int }_{0}^{L}{\psi }_{i}^{{^{\prime}}}{\psi }_{j}^{{^{\prime}}}\hbox{d}x+\left(B\left({F}_{{\rm t}}^{1}+{F}_{{\rm b}}^{1}\right)+{\xi }_{3}\right){\int }_{0}^{L}{\psi }_{i}{\psi }_{j}\hbox{d}x,\\ {{M}}_{12}&={\xi }_{1}S{\int }_{0}^{L}{\psi }_{i}^{{^{\prime}}}{\varphi }_{j}\hbox{d}x,\\ {{M}}_{13}&=-{\xi }_{1}S{\int }_{0}^{L}{\psi }_{i}^{{^{\prime}}}{\varphi }_{j}\hbox{d}x,\\ {{M}}_{21}&={\xi }_{1}S{\int }_{0}^{L}{\varphi }_{i}{\psi }_{j}^{{^{\prime}}}\hbox{d}x,\\ {{M}}_{22}&=\left(B{F}_{{\rm t}}^{1}+{\xi }_{1}\right){\int }_{0}^{L}{\varphi }_{i}{\varphi }_{j}\hbox{d}x,\\ {{M}}_{23}&=-{\xi }_{1}{\int }_{0}^{L}{\varphi }_{i}{\varphi }_{j}\hbox{d}x,\\ {{M}}_{31}&=-{\xi }_{1}S{\int }_{0}^{L}{\varphi }_{i}{\psi }_{j}^{{^{\prime}}}\hbox{d}x,\\ {{M}}_{32}&=-{\xi }_{1}{\int }_{0}^{L}{\varphi }_{i}{\varphi }_{j}\hbox{d}x,\\ {{M}}_{33}&=\left(B{F}_{{\rm b}}^{1}+{\xi }_{1}\right){\int }_{0}^{L}{\varphi }_{i}{\varphi }_{j}\hbox{d}x.\end{aligned}$$
(49)

The coefficients of the stiffness matrices for the FGMR beam:

$$\begin{aligned} K_{11} &= B\left( {D_{{\rm t}}^{3} + D_{{\rm b}}^{3} + \Lambda_{{\rm t}}^{3} + \Lambda_{{\rm b}}^{3} } \right)\mathop \int \limits_{0}^{L} \psi_{i}^{\prime \prime } \psi_{j}^{\prime \prime } {\text{d}}x + \left( {B\left( {\Lambda_{{\rm t}}^{1} + \Lambda_{{\rm b}}^{1} } \right) + \xi_{2} S^{2} } \right)\mathop \int \limits_{0}^{L} \psi_{i}^{\prime } \psi_{j}^{\prime } {\text{d}}x \\ & \quad - \xi_{8} \mathop \int \limits_{0}^{L} \left( {\ln \frac{1}{L - x}} \right)\psi_{i}^{\prime \prime } \psi_{j}^{\prime } {\text{d}}x + \xi_{9} \mathop \int \limits_{0}^{L} \psi_{i}^{\prime } \psi_{j}^{\prime } {\text{d}}x - \xi_{10} \mathop \int \limits_{0}^{L} \psi_{i}^{\prime \prime \prime} \psi_{j}^{\prime } {\text{d}}x,\\ {K}_{12}&={\xi }_{2}S{\int }_{0}^{L}{\psi }_{i}^{{^{\prime}}}{\varphi }_{j}\hbox{d}x-2B\left({D}_{{\rm t}}^{2}+{\Lambda }_{{\rm t}}^{2}\right){\int }_{0}^{L}{\psi }_{i}^{{^{\prime}}{^{\prime}}}{\varphi }_{j}^{{^{\prime}}}\hbox{d}x,\\{K}_{13}&=-{\xi }_{2}S{\int }_{0}^{L}{\psi }_{i}^{{^{\prime}}}{\varphi }_{j}\hbox{d}x-2B\left({D}_{{\rm b}}^{2}+{\Lambda }_{{\rm b}}^{2}\right){\int }_{0}^{L}{\psi }_{i}^{{^{\prime}}{^{\prime}}}{\varphi }_{j}^{{^{\prime}}}\hbox{d}x,\\{K}_{21}&={\xi }_{2}S{\int }_{0}^{L}{\varphi }_{i}{\psi }_{j}^{{^{\prime}}}\hbox{d}x+{\xi }_{6}{\int }_{0}^{L}{\left(ln\frac{1}{L-x}\right)}^{-1}{\varphi }_{i}^{{^{\prime}}}{\psi }_{j}^{{^{\prime}}}\hbox{d}x,\\ {K}_{22}&=B\left({D}_{{\rm t}}^{1}+{\Lambda }_{{\rm t}}^{1}\right){\int }_{0}^{L}{\varphi }_{i}^{{^{\prime}}}{\varphi }_{j}^{{^{\prime}}}\hbox{d}x+{\xi }_{2}{\int }_{0}^{L}{\varphi }_{i}{\varphi }_{j}\hbox{d}x+{\xi }_{4}{\int }_{0}^{L}{\varphi }_{i}^{{^{\prime}}{^{\prime}}}{\varphi }_{j}\hbox{d}x,\\ {K}_{23}&=-{\xi }_{2}{\int }_{0}^{L}{\varphi }_{i}{\varphi }_{j}\hbox{d}x,\\ {K}_{31}&=-{\xi }_{2}S{\int }_{0}^{L}{\varphi }_{i}{\psi }_{j}^{{^{\prime}}}\hbox{d}x+{\xi }_{7}{\int }_{0}^{L}{\left(ln\frac{1}{L-x}\right)}^{-1}{\varphi }_{i}^{{^{\prime}}}{\psi }_{j}^{{^{\prime}}}\hbox{d}x,\\ {K}_{32}&=-{\xi }_{2}{\int }_{0}^{L}{\varphi }_{i}{\varphi }_{j}\hbox{d}x,\\ {K}_{33}&=B\left({D}_{{\rm b}}^{1}+{\Lambda }_{{\rm b}}^{1}\right){\int }_{0}^{L}{\varphi }_{i}^{{^{\prime}}}{\varphi }_{j}^{{^{\prime}}}\hbox{d}x+{\xi }_{2}{\int }_{0}^{L}{\varphi }_{i}{\varphi }_{j}\hbox{d}x+{\xi }_{5}{\int }_{0}^{L}{\varphi }_{i}^{{^{\prime}}{^{\prime}}}{\varphi }_{j}\hbox{d}x.\end{aligned}$$
(50)

where

$$\begin{aligned} {\xi }_{1}&=\frac{{\rho }_{{\rm c}}{I}_{{\rm c}}}{{h}_{{\rm c}}^{2}} ,\quad {\xi }_{2}=\frac{{G}_{{\rm c}}^{*}{A}_{{\rm c}}}{{h}_{{\rm c}}^{2}} ,\quad {\xi }_{3}={\rho }_{{\rm c}}{A}_{{\rm c}} ,\quad {\xi }_{4}=\frac{{B}_{0}^{2}B{h}_{{\rm t}}}{{\mu }_{et}} ,\quad {\xi }_{5}=\frac{{B}_{0}^{2}B{h}_{{\rm b}}}{{\mu }_{eb}} ,\quad {\xi }_{6}=\frac{{\pi B}_{0}^{2}B{h}_{{\rm t}}}{2{\mu }_{0}},\\ {\xi }_{7}&=\frac{{\pi B}_{0}^{2}B{h}_{{\rm b}}}{2{\mu }_{0}} ,\quad {\xi }_{8}=\frac{{B}_{0}^{2}B\left({h}_{{\rm b}}^{2}+{h}_{{\rm t}}^{2}\right)}{2\pi {\mu }_{0}} ,\quad {\xi }_{9}=\frac{{B}_{0}^{2}B\left({h}_{{\rm b}}+{h}_{{\rm b}}\right)}{{\mu }_{0}} ,\quad {\xi }_{10}=\frac{{B}_{0}^{2}B}{12}\left(\frac{{h}_{{\rm b}}^{3}}{{\mu }_{eb}}+\frac{{h}_{{\rm t}}^{3}}{{\mu }_{et}}\right).\end{aligned}$$
(51)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzavand Borojeni, B., Shams, S., Kazemi, M.R. et al. Effect of temperature and magnetoelastic loads on the free vibration of a sandwich beam with magnetorheological core and functionally graded material constraining layer. Acta Mech 233, 4939–4959 (2022). https://doi.org/10.1007/s00707-022-03316-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03316-1

Navigation